●JSME テキストシリーズ 流体力学 初版第6刷から第9刷の正誤表

番号	ページ・行	誤	正 (赤字訂正)
1	p 35, L13	$y_c = \frac{I_{xg}}{y_g A} + y_g = \frac{1.5 \times (2.5)^3 / 36}{3.08 \times 1.5 \times 2.5} + 3.08 = 3.14 \text{ (m)}$	$y_c = \frac{I_{xg}}{y_g A} + y_g = \frac{1.5 \times (2.5)^3 / 36}{3.08 \times 1.5 \times 2.5 / 2} + 3.08 = 3.19 \text{ (m)}$
2	p 36, L9	投影 A _z	投影 A _y
3	p 40, 下 L2	$-\boldsymbol{\alpha} = -\boldsymbol{\Omega} \times \boldsymbol{\Omega} \times \boldsymbol{r} = r\Omega^2 \boldsymbol{i}_r$	$-\boldsymbol{\alpha} = -\boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \boldsymbol{r}) = r\Omega^2 \boldsymbol{i}_r$
4	p 59, L8	$h_2 - h_1 = -\left(\frac{U_2^2}{2} - \frac{U_1^2}{2}\right) = -\frac{\left(200^2 - 4^2\right)}{2} = -4.00 \times 10^4$	$h_2 - h_1 = -\left(\frac{U_2^2}{2} - \frac{U_1^2}{2}\right) = -\frac{\left(200^2 - 4^2\right)}{2} = -2.00 \times 10^4$
5	p 59, L10	4.00×10^4 J/kg	$2.00 \times 10^4 \text{J/kg}$
6	p 59, L22	$\therefore p_1 - p_2 = \frac{W}{A} = \frac{290 \times 10^3 \times 9.8}{495} = 5.74 \times 10^3$	$\therefore p_1 - p_2 = \frac{W}{A} = \frac{290 \times 10^3 \times 9.8}{485} = 5.86 \times 10^3$
7	p 60, L1	$\frac{U_2}{U_1} = \sqrt{1 + \frac{5.74 \times 10^3}{\frac{1}{2} \times 1.23 \times \left(200 \times 10^3 / 3600\right)^2}} = 2.00$	$\frac{U_2}{U_1} = \sqrt{1 + \frac{5.86 \times 10^3}{\frac{1}{2} \times 1.23 \times \left(200 \times 10^3 / 3600\right)^2}} = 2.02$
8	р 85, 図 5.36 (b)	Q = 12 liters/s	Q = 12 liters/min
9	p 90, 末尾		(以下を追記)
			入口部で発生する損失を 入口損失 (inlet loss)といい,その損失ヘッドは, $\Delta h = \zeta \left(v^2/2g \right)$
			で表される (ζ は入口損失係数). 通常の管摩擦損失にこれが上乗せされる.
10	p 114, L19	流れと反対方向に	流れ方向に
11	p 141, 下 L8	$F(x) = \rho_0 \left\{ 1 + 0.05 \left(x/L \right) \right\}$	$F(x) = \rho_0 \left\{ 1 + k \left(x / L \right) \right\}$
12	p 143, L1	$\frac{\partial \mathbf{u}}{\partial t} = \mu \frac{\partial^2 \mathbf{u}(x, y)}{\partial y^2}.$	$\frac{\partial \boldsymbol{u}}{\partial t} = \mu \frac{\partial^2 \boldsymbol{u}(\boldsymbol{y}, t)}{\partial \boldsymbol{y}^2}.$

13	p 160, 解答【9·6】	1.75×10^3 (N)	3.50×10^3 (N)
14	p 199, 右段	differential manometer 示差マノメータ	differential manometer 示差マノメータ
		230	30

2014/1/14 作成