<table>
<thead>
<tr>
<th>No</th>
<th>項目</th>
<th>誤</th>
<th>正（下線部訂正）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>式 1.1 (x(t) = e^{at}x_s + \int_0^t e^{a(t-\tau)}bu(t)d\tau)</td>
<td>(x(t) = e^{at}x_s + \int_0^t e^{a(t-\tau)}bu(\tau)d\tau)</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>式 2.10 (d^2dx + c \frac{dx}{dt} + kdx = 0)</td>
<td>(d^2\delta x + c \frac{d\delta x}{dt} + k\delta x = 0)</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>式 2.78 (A \frac{dh}{dt} + \frac{q_0}{2h_0} \Delta h = \Delta q_1)</td>
<td>(A \frac{d\Delta h}{dt} + \frac{1}{R} \Delta h = \Delta q_1)</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>表の Inductor (v(t) = Ri)</td>
<td>(v(t) = L \frac{di}{dt})</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>式 3.5 (T \frac{d^2y(t)}{dt^2} + y(t) = x(t))</td>
<td>(T \frac{dy(t)}{dt} + y(t) = x(t))</td>
</tr>
<tr>
<td>7</td>
<td>27</td>
<td>式 3.11 (f(t) = \frac{1}{2\pi j} \int_{-\infty}^{\infty} F(s)e^{st}ds)</td>
<td>(f(t) = \frac{1}{2\pi j} \int_{-\infty}^{\infty} F(s)e^{st}ds)</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>式 3.15 (X(s) = K(U(s)))</td>
<td>(G(s) = \frac{X(s)}{U(s)} = K)</td>
</tr>
<tr>
<td>9</td>
<td>28</td>
<td>表 3.2(3) (\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s))</td>
<td>(\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s))</td>
</tr>
<tr>
<td>10</td>
<td>28</td>
<td>表 3.2(6) (L[\lambda f(t) + \mu g(t)] = \lambda F(s) + \mu G(s))</td>
<td>(L[\int_{-\infty}^{\infty} f(t-\tau)g(\tau)d\tau] = L[\int_{-\infty}^{\infty} g(t-\tau)f(\tau)d\tau] = F(s)G(s))</td>
</tr>
<tr>
<td>11</td>
<td>29</td>
<td>式 3.23 (L[T \frac{d^2y(t)}{dt^2}] = s^2TY(s))</td>
<td>(L[T \frac{dy(t)}{dt}] = sTY(s))</td>
</tr>
<tr>
<td>12</td>
<td>33</td>
<td>式 3.63, 3.65 の最右辺 (\frac{Ts}{1+Ts})</td>
<td>(\frac{Ts}{1+Ts})</td>
</tr>
<tr>
<td>13</td>
<td>40</td>
<td>解 3.8 Next, we table 3.2.</td>
<td>Next, use 8 in table 3.2, A.2.</td>
</tr>
<tr>
<td>14</td>
<td>40</td>
<td>図 3.28(c) (図差し替え)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>下から 2 行目 (y(t) = [\text{Im}G(j\omega)]\cos \omega t + [\text{Re}G(j\omega)]\sin \omega t + \sum_{i=1} B_i e^{-\omega_0 t} + \sum_{j=1} B_j e^{-\omega_0 t} \cos(g_j t + d_j))</td>
<td>(y(t) = [\text{Im}G(j\omega)]\cos \omega t + [\text{Re}G(j\omega)]\sin \omega t + \sum_{i=1} B_i e^{-\omega_0 t} + \sum_{j=1} B_j e^{-\omega_0 t} \cos(g_j t + d_j))</td>
</tr>
<tr>
<td>16</td>
<td>44</td>
<td>表 4.1 二次系の周波数伝達関数 (\omega_n \sum_{i=1} B_i e^{-\omega_0 t} + \sum_{j=1} B_j e^{-\omega_0 t} \cos(g_j t + d_j))</td>
<td>(\omega_n \sum_{i=1} B_i e^{-\omega_0 t} + \sum_{j=1} B_j e^{-\omega_0 t} \cos(g_j t + d_j))</td>
</tr>
<tr>
<td>17</td>
<td>45</td>
<td>最下の式 (\omega_n \sum_{i=1} B_i e^{-\omega_0 t} + \sum_{j=1} B_j e^{-\omega_0 t} \cos(g_j t + d_j))</td>
<td>(\omega_n \sum_{i=1} B_i e^{-\omega_0 t} + \sum_{j=1} B_j e^{-\omega_0 t} \cos(g_j t + d_j))</td>
</tr>
<tr>
<td>行</td>
<td>ページ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 18 | 54 | 式 5.18 $y(t) = y(0)\exp\left(-\frac{1}{2}t\right)\sin\left(\frac{\sqrt{3}}{2}t\right)$
| 19 | 63 | 図 5.20
| 20 | 64 | 図 5.21
| 21 | 81 | 式 7.17の左辺 $\text{num}(s)+K\text{den}(s)$
| 22 | 82 | 式 7.23 $\angle(-1-j+2) = 90^\circ$
| 23 | 82 | 式 7.25の左辺 $\text{num}(s)+K\text{den}(s)$
| 24 | 83 | 式 7.36の左辺 $\text{num}(s)+K\text{den}(s)$
| 25 | 84 | 式 7.41 $u = K_d \frac{dy}{dt}$
| 26 | 89 | 表 7.1
| 27 | 91 | 下から2行目の式
| 28 | 173 | 10行目の式
| 29 | 189 | 12行目の式
| 30 | 192 | 10行目
| 31 | 193 | 付表 3.1
| 32 | 195 | 付表 3.2
<table>
<thead>
<tr>
<th>行</th>
<th>ページ番号</th>
<th>変換後</th>
<th>図A.1（キャプション）</th>
<th>図A.2（キャプション）</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>195</td>
<td>付表3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>196</td>
<td>行目</td>
<td>z_iが不安定な極の場合</td>
<td>z_iが閉ループ系の不安定な極の場合</td>
</tr>
<tr>
<td>35</td>
<td>196</td>
<td>図A.1</td>
<td>r_i</td>
<td>z_i</td>
</tr>
<tr>
<td>36</td>
<td>196</td>
<td>図A.1</td>
<td>偏角の動き（極が安定の場合）</td>
<td>偏角の動き（極が不安定の場合）</td>
</tr>
<tr>
<td>37</td>
<td>196</td>
<td>図A.2</td>
<td>r_i</td>
<td>z_i</td>
</tr>
<tr>
<td>38</td>
<td>196</td>
<td>図A.2</td>
<td>偏角の動き（極が不安定の場合）</td>
<td>偏角の動き（極が安定の場合）</td>
</tr>
</tbody>
</table>

2005/1/7 作成